I/O Hardware

Basic I/O Hardware

"Serial" Systems

Cray C90

Parallel Systems

- Intel Paragon
- IBM SP2
- Meiko CS-2
- Cray T3D

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 1

Parallel I/O Hardware

Disks

Attaching disks to compute nodes

- Directly attached disks
- Software arrays/RAIDs
- Network attached disks
- I/O node(s)

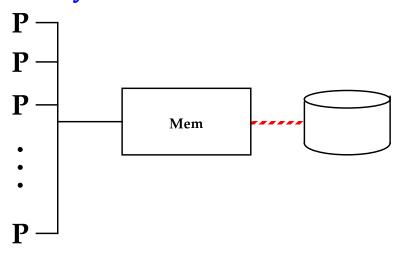
Disks

Hardware disk array/RAID

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 3

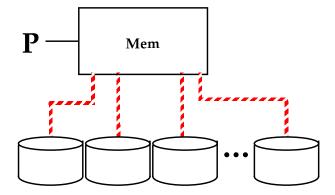
Directly Attached Disks (Workstations)



Disks attached directly to nodes

- Only single processor can access disk
- Disk attached with SCSI or similar interface
- Other processors must request data on disk from attached processor
- Remember, the disk could be a hardware array

Directly Attached Disks (SMPs)

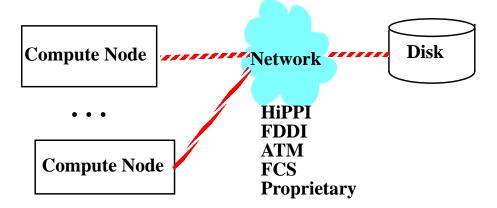


Like directly attached disks, but all processors in the "box" can directly access the disk

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 5

Software Arrays/RAIDS



Multiple disks attached to a processor (or SMP)

- Disk blocks striped across disks
- Redundant disks can be used for reliability

Network Attached Disks

Access disk(s) directly through network

- All nodes can access disk (s)
- No intermediate host

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

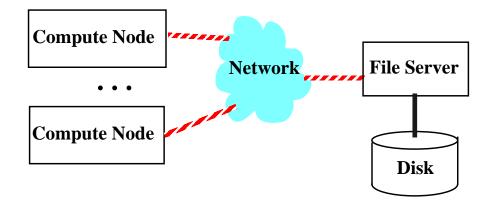
Hardware Page 7

I/O Nodes

Access files through file server(s)

Server(s) attached to other nodes through network

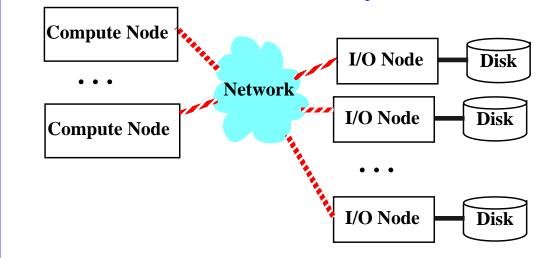
Workstation model


- Single file server (per filesystem)
- Distributed filesystem protocol, e.g., NFS, DFS.

Parallel filesystem model

- Multiple file servers (per filesystem)
- Parallel filesystem protocol, e.g., PFS, PIOFS.

I/O Nodes - Workstation Model



SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 9

I/O Nodes - Parallel Filesystem Model

Parallel I/O Hardware Summary

Disks

- Disks can be single disks or hardware arrays
- Disks can be accessed directly or across a network
- Network accessed disks can be directly attached to the network or may require an I/O node

Differences are largely logical

- Network attached disks can be thought of as special I/O nodes
- SCSI channels can be thought of as networks

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 11

Parallel I/O Hardware Summary

The real difference is the filesystem

- Are files striped?
 - Internal to a hardware RAID
 Across directly attached disks
 Across I/O nodes
- Is a filesystem shared with other nodes?

Compute Nodes 200 MB/sec 200 MB/sec 200 MB/sec 200 MB/sec 200 MB/sec

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 13

Cray Research C90

Shared memory compute nodes

- Custom processors
- SMP OS, UNICOS

Only a single system accesses each disk

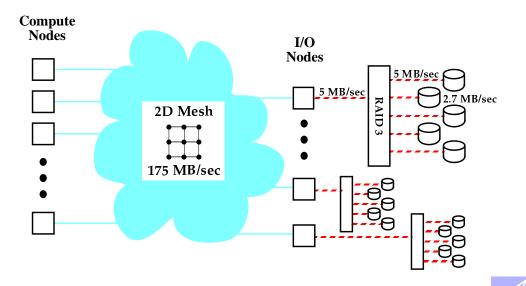
- Disks directly attached or network attached
- No I/O nodes or file servers
- Same as SMP workstation model

Cray Research C90

Can stripe across multiple disks

software array (AED)

Can buffer through memory or solid state disk


I/O scales well with \$\$\$

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 15

Intel Paragon I/O Architecture

Hardware Page 16

Intel Paragon

Compute Nodes

- i860XP based
- Attached inside mesh (175 MB/sec)
- Distributed OS, OSF/1 AD

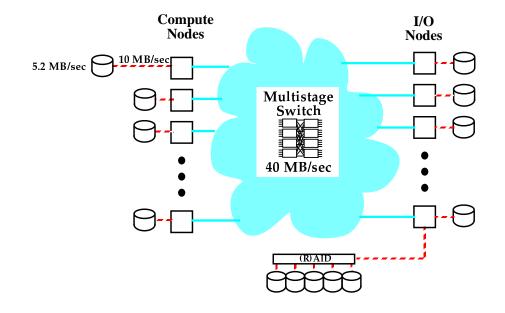
Disks attached only to I/O nodes

- Full compute nodes Intel i860XP w/16-32 MB
- Attached inside mesh (175 MB/sec)
- 5 SCSI disks, Hardware RAID-3 (4+1)

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 17

Intel Paragon


Parallel File System: **PFS**

- UNIX file interface, built on top of UFS
- File blocks striped across UFS filesystems

Performance scales at about 2.5MB/sec per I/O node

IBM SP2 I/O Architecture

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 19

IBM SP2

Compute Nodes

- Rack mounted RS6000 workstations
- Runs full AIX on every node

Disks directly attached to each node

- SCSI, SCSI-2, FCS, or any micro-channel adapter
- (R)AID or normal SCSI disks
- Nodes communicate through 40MB/s multistage network

IBM SP2

No clear differentiation between node types

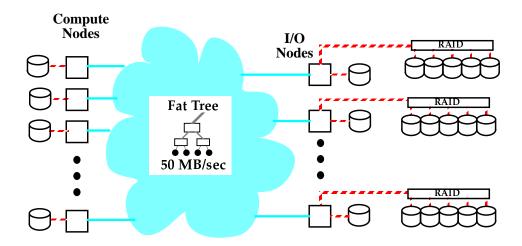
- Every node has at least one disk, some have more
- I/O nodes defined by software
- I/O nodes can also be compute nodes

File systems

- Normal workstation distributed file systems (NFS, DFS, AFS, etc.)
- Parallel file system (PIOFS)

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 21


IBM SP2

Parallel file system: **PIOFS**

- UNIX interface, on top of IBM file system
- Files striped across I/O nodes' disk(s)
- Performance scales with both number of I/O nodes and disk speed to speed of internal network (10-15MB/sec for system messages)

Meiko CS-2 I/O Architecture

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 23

Meiko CS-2

Compute nodes

- SPARC based
- Full Solaris on every node

Disks directly attached to each node

- RAID or normal SCSI disks
- Every node has at least one disk
- Nodes communicate through 50MB/sec fat tree network

Meiko CS-2

I/O nodes

- Same as compute nodes, but have a RAID
- Defined by software, can compute as well

Parallel file system

- Files striped across I/O node RAIDs
- Achieves about 2MB/s per I/O node

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 25

Compute Nodes JO Nodes 200 MB/sec Cray Research Front-end 150 MB/sec Model E I/O subsystem

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 26

Cray T3D

Compute nodes

- DEC Alpha based
- Mach based micro-kernel on each node
- Front end services node requests

Disks attached to single file server: Cray host

- Centralized, UNIX file system on Cray host
- Disks directly attached to Y-MP (see C90 slide)
- Cray host SSD can be used as file cache

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 27

Cray T3D

I/O Nodes

- Modified compute nodes DEC Alpha based
- Attached inside torus (X and Z only) (300 MB/sec)
- Attached to Y-MP through I/O Gateway
 1 HISP (200 MB/sec), 1 LOSP (6MB/sec)

I/O Hardware Example Summary

System	Compute Nodes	I/O Nodes	Disk Types	Disk Attachment	Striping File System	Performance
Cray C90	C90	n/a	Various	Cray IOS	Software AED	limited by \$\$
Intel Paragon	i860 Based	i860 Based	RAID-3	SCSI	PFS	~2.5MB/s per I/O node
IBM SP2	RS6000	RS6000	Various	SCSI, FCS,	PIOFS	up to 10-15 MB/s per I/O node
Meiko CS-2	SPARC	SPARC	SCSI Disks, RAID	SCSI	PFS?	~2MB/s per I/O node
Cray T3D	DEC Alpha	DEC Alpha	Various	I/O Gateway	Internal to Y-MP	limited by Y-MP

SC '95 Parallel I/O Tutorial, B. Nitzberg and S. Fineberg

Hardware Page 29